Estimating the Upper Bound of the Cover Size of the Complete Subtree Method

Big Data Security

李卓倩, 王帅朝, Raziur Rahman Totha, Julien Schmidt June 2, 2017

Shanghai Jiao Tong University

- Broadcast Encryption
- Stateless Receivers
- Revocation Scheme

Goal

Sender sending message to a group of users, in which a subset is considered revoked and should not be able to obtain the content.

- Broadcast Encryption
- Stateless Receivers
- Revocation Scheme

Goal

Sender sending message to a group of users, in which a subset is considered revoked and should not be able to obtain the content.

Example

Pay-TV

D. Naor, M. Naor, and J. Lotspiech. "Revocation and Tracing Schemes for Stateless Receivers". *Annual International Cryptology Conference*. Springer Berlin Heidelberg, 2001.

- Provide condition for the security of revocation schemes
- Separation between long-lived keys and short-lived keys
- Separation of tracing mechanism from revocation algorithm
- Subset-Cover Algorithms

D. Naor, M. Naor, and J. Lotspiech. "Revocation and Tracing Schemes for Stateless Receivers". *Annual International Cryptology Conference*. Springer Berlin Heidelberg, 2001.

- Provide condition for the security of revocation schemes
- Separation between long-lived keys and short-lived keys
- Separation of tracing mechanism from revocation algorithm
- Subset-Cover Algorithms
 - 1. Receivers partitioned into multiple subsets
 - 2. Cover all non-revoked receivers with disjoint subsets
 - No assumed upper bound of revoked receivers

Method	Cover Size	Keys per Receiver	Processing Time	Decryptions
Complete Subtree	$r\log\frac{n}{r}$	log n	$O(\log \log n)$	1
Subset Difference	2r – 1	$\frac{1}{2}\log^2 n$	$O(\log n)$	1

 $S_j = \text{Set of (sub-) child leaves}$

 $S_1 = \{u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8\}$

 $S_2 = \{u_1, u_2, u_3, u_4\}$

 $S_5 = \{u_3, u_4\}$

 $S_{11} = \{u_4\}$

 $\begin{aligned} \mathcal{R} &= \{u_2, u_5, u_6\} \\ \textit{Steiner Tree ST}(\mathcal{R}) \end{aligned}$

 $\mathcal{R} = \{u_2, u_5, u_6\}$ $\mathcal{N} \setminus \mathcal{R} = S_8 \cup S_5 \cup S_7$

The cover size is at most

$$\mathbf{r} \cdot \log \frac{\mathbf{n}}{\mathbf{r}}$$

The cover size is at most

 \Rightarrow How many subset keys have to be transmitted in the worst case?

The cover size is at most

 \Rightarrow How many subset keys have to be transmitted in the worst case?

- \mathcal{N} Set of receivers (devices)
- $S_1,...,S_w$, $S_j \subseteq \mathcal{N}$ Subsets

 \mathcal{R}

Set of revoked receivers

 $\mathcal{N}\setminus\mathcal{R}=igcup_{j=1}^mS_{i_j}$ Set of non-revoked receivers is a partition of subsets $n=|\mathcal{N}|$ $r=|\mathcal{R}|$

Observation

The number of required subsets is equal to the number of nodes with degree 1 in $ST(\mathcal{R})$

Upper Bound $C_{max}(n, r)$:

The max. cover size for n receivers in total of which r are revoked

- Trivially $C_{max}(n,0) = 1$
- $0 < r \le n \Longrightarrow$ Induction

To prove: $r \cdot \log \frac{n}{r}$

- $k = \log(n)$
- $\log(\frac{n}{r}) = \log(n) \log(r) = k \log(r)$

 $k \qquad C_{max}(2^k, r) \leq r \cdot (k - \log(r))$

 $k \rightarrow k + 1$:

Case 1: All in one side

If all leaves are in a subtree of depth k, then the total number of nodes of degree 1 is at most:

$$C_{max}(2^{k+1}, r) = r \cdot (k - \log r) + 1 \le r \cdot (k + 1 - \log r)$$
(1)

Induction Step

Case 2: $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$

 \mathcal{R} is split among the left (\mathcal{R}_1) and right subtree (\mathcal{R}_2) of the root. Thus:

$$r = r_1 + r_2 \tag{2}$$

By induction at most: $C_{max}(2^{k+1}, r) =$

$$r_{1} \cdot (k - \log r_{1}) + r_{2} \cdot (k - \log r_{2}) = r \cdot k - (r_{1} \log r_{1} + r_{2} \log r_{2}) \\ \leq r \cdot (k + 1 - \log r)$$
(3)

since $(r_1 \log r_1 + r_2 \log r_2) \ge r \cdot (\log r - 1)$

Questions?