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The Problem

• Broadcast Encryption
• Stateless Receivers
• Revocation Scheme

Goal
Sender sending message to a group of users, in which a subset is
considered revoked and should not be able to obtain the content.

Example
Pay-TV
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The Subset-Cover Revocation Framework

D. Naor, M. Naor, and J. Lotspiech. “Revocation and Tracing Schemes
for Stateless Receivers”. Annual International Cryptology Conference.
Springer Berlin Heidelberg, 2001.

• Provide condition for the security of revocation schemes
• Separation between long-lived keys and short-lived keys
• Separation of tracing mechanism from revocation algorithm
• Subset-Cover Algorithms

1. Receivers partitioned into multiple subsets
2. Cover all non-revoked receivers with disjoint subsets
• No assumed upper bound of revoked receivers

Method Cover Size Keys per Receiver Processing Time Decryptions
Complete Subtree r log n

r log n O(log log n) 1
Subset Difference 2r − 1 1

2 log
2 n O(log n) 1
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The Complete Subtree Method

Sj = Set of (sub-) child leaves
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The Complete Subtree Method

S1 = {u1, u2, u3, u4, u5, u6, u7, u8}
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The Complete Subtree Method

S2 = {u1, u2, u3, u4}
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The Complete Subtree Method

S5 = {u3, u4}
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The Complete Subtree Method

S11 = {u4}
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The Complete Subtree Method

R = {u2, u5, u6}
Steiner Tree ST(R)
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The Complete Subtree Method

R = {u2, u5, u6}
N \ R = S8 ∪ S5 ∪ S7
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The Cover Size Upper Bound

The cover size is at most

r · log n
r

⇒ How many subset keys have to be transmitted in the worst case?

N Set of receivers (devices)
S1, ..., Sw, Sj ⊆ N Subsets
R Set of revoked receivers
N \R =

∪m
j=1 Sij Set of non-revoked receivers is a partition of subsets

n = |N |
r = |R|
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Proof Idea

Observation
The number of required subsets is equal to the number of nodes with
degree 1 in ST(R)

Upper Bound Cmax(n, r):
The max. cover size for n receivers in total of which r are revoked

• Trivially Cmax(n, 0) = 1
• 0 < r ≤ n =⇒ Induction
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Induction Base

Depth k = 1:

n = 2k = 2

r = 1:

1

u1 u2

Cmax(2, 1) = 1 = 1 · log 2
1

r = 2:

1

u1 u2

Cmax(2, 2) = 0 = 2 · log 2
2
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Induction Hypothesis

To prove: r · log n
r

• k = log(n)
• log( n

r ) = log(n)− log(r) = k − log(r)

k Cmax(2k, r) ≤ r·(k−log(r))
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Induction Step

k → k + 1:
Case 1: All in one side

If all leaves are in a subtree of depth k, then the total number of nodes
of degree 1 is at most:

Cmax(2k+1, r) = r · (k − log r)+1 ≤ r · (k + 1 − log r) (1)
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Induction Step

Case 2: R = R1 ∪R2

R is split among the left (R1) and right subtree (R2) of the root. Thus:

r = r1 + r2 (2)

By induction at most: Cmax(2k+1, r) =

r1 · (k − log r1) + r2 · (k − log r2) = r · k − (r1 log r1 + r2 log r2)

≤ r · (k + 1 − log r)
(3)

since (r1 log r1 + r2 log r2) ≥ r · (log r − 1)

■
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Questions?
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